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INVESTIGATTON OF A SUPERSONIC-INLET - TURBOJET-ENGINE COMBINATTON
AT MACH 2.0 AND ANGLES OF ATTACK UP TO 6°

By Donald P. Hearth and Normaen T. Musial

SUMMARY

Data were obtained on a supersonic-inlet - turbojet-engine combina-
tion at a free-stream Mach number of 2.0 and. angles of attack from 0° to
6°. Performance of the engine, which operated over a wide range of
compressor-face distortions and during unstable inlet flow, is presented.
In addition, the effect of the engine oh the inlet performence is
discussed.

Although the engine did not influence inlet pressure recovery, data
indicate that the engine may have increased the compressor-face distor-
tions &t angle of attack. Insofar as could be determined, neither very
high compressor-face distortions nor unstable inlet flow resulted in
engine surge or in & reduction in engine performsnce. However, a crack
was observed in the front-bearing support strut after 19.2 hours of
operation at Mach 2.0. Unstable inlet flow existed for sbout 1.6
hours of this rumning time.

INTRODUCTION

Investigetions of supersonic inlet configurations ususlly are made
with a throttling exit plug in place of the turbojet engine (e.g., refs.
1 and 2) because of tunnel size and ease of operation. Thus, interaction
between the inlet and the engine is rarely observed except in flight. To
study the interaction problems, a J34 turbojet engine was operated behind
a supersonic inlet in the Lewis 8- by 6-foot supersonic wind tunnel (refs.
3 to 5). These tests indicated a definite effect of the engine on the
inlet stability chearacteristics but showed little effect of the inlet on
engine performance.

[4

Presented herein are the results of an investigation made at the
NACA Lewls laboratory on an inlet-engine combination for a proposed super-
sonic airplane. Tests also were made with the engine removed from the
nacelle, wherein an exit plug was used to vary airflow (ref. 2). The
present study was conducted in the 10- by 10-foot supersonic wind tunnel
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2 ' CONFIDENTTAL NACA RM ES7D18

at a Mach number of 2.0 and at angles of attack from O° to 6°. This re-
port presents date showing the effect of the engine on inlet performance
as well as the performance of the engine behind a supersonic inlet. Ef-
fects of the engine on the inlet stability characteristics for this same
configuretion sre presented in reference 6.

SYMBOLS

The following symbols are used in this report:
N engine speed, rpm
N*  rated engine speed, 7460 rpm
P total pressure, 1b/sq £t

static pressure, 1b/sq £t
Re Reynolds number index, 5_/ oVo
r radius, £t
T total temperature, °R
w weight flow, 1b/sec
a angle of attack, deg
B compressor-stator position, deg
3

rati7 of total pressure to NACA standard sea-level pressure of 2116
1b/sq ft

e campressor adisbatic efficiency

e retio of total temperature to NACA stendard sea-level temperature
of 518.7° R

92 cowl-positicn parameter (angle between diffuser axis snd line join-
ing cone apex to cowl lip), deg

® ratio of sbsolubte viscosity at engine-face conditions to absolute
viscosity at NACA standard sea-level conditioms

Subscripts:
ay average
£ fuel

max  maximm

nmin minimm
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0 free stream
2 compressor face
5 turbine discharge

APPARATUS AND PROCEDURE

The turbojet engine (fig. 1) investigated in this study had a
seventeen-stage axial-flow compressgoxr and a three-stege turbine. Al-
though the engine was equipped with an efterburner, the tests were con-
ducted without afterburning. The first seven stator stages in the com-
pressor were varigble and are scheduled by engine speed plus compressor-
inlet temperature. The varigble exhaust nozzle 1s scheduled by power-
level position and biassed by exhaust-ges temperature. The flow area &t
the compressor face was 4.52 square feet.

The engine was installed in a production nacelle for a current super-
sonlic airplane. Figures 2 and 3 show that the nacelle had a bulge on the
bottom to provide space for engine accessories. The maximum dliameter of
the nacelle was about 51 inches. The englne was started by allowing it
to windmill until the tunnel was at the test condition and then lighting
it; generally, little difficulty was encountered in engine lightoff.

The nacelle configuration consisted of a translating-splke inlet
(ref. 2) and a convergent ejector exhaust nozzle whose secondary airflow
was sypplied by sublnlets in the maln inlet. A larger ejector than the
flight model was used, in order to assure pumping a&bility high enough to
choke the subinlets (fig. 3). The secondary flow was used in oill coolers
before it was discharged into the annulus around the engine upstream of
the ejector. About 8 to 10 percent of the main inlet flow was bypassed
to the elector in this manner.

Tnlet tests were made with both the engine and cold-pipe configure-
tions shown in figure 3. The performance of the engine and a comparison
of the inlet performance for the cold-pipe and engine configurations are
presented herein. For supercritical inlet operation, the engine airflow
was calculated from the known mass-flow ratio (from exit-plug data) and
the measured static pressure at station 75.4 (fig. 3). When the inlet
was subcritical, engine airflow was obtained from the manufacturer's air-
flow curve. Total pressure at the compressor face was calculated from
the measured static pressure and the engine airflow. Englne performance
was computed (in the normal manner) from data recorded by the instrumenta-
tlon shown in figure 3. '

The inlet-engine combination was tested at a free-stream Mach number
of 2.0 at a pressure altitude of about 56,000 feet. The compressor-face
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total temperature was about 540° ¥10° R because of the method of fa-
cility operation. Thus, the englne was tested at a Reynolds number in-
dex of 0.43 to 0.56. On a standard day in flight (free-stream static
temperature, 3920 R}, the Reynolds number index Re would range from
0.31 to 0.40.

RESULTS AND DISCUSSION

Figure 4 presents the Inlet performance for various spike positions,
measured with the cold-pipe configuretion and with the engine operating.
The total-pressure recovery characteristics were the same for both cases
at all angles of attack. The comparison of the compressor-face distortions
shown 1n the upper part of figure 4 1s not exact because of instrumenta-
tion differences between the cold-pipe and engine configurations. The
distortion values presented for the cold-pipe case were computed from the
six rakes noted in figure 3. However, these rakes were not installed dur-
ing the engine tests; instead, flush total-pressure probes were installed
in the horizontal support struts at the compressor face. As shown in fig-
ures 4(b) and (c), the horizontal distortlons with the engine were, in
some cases, considerably higher than those measured with the cold pipe.
Thls difference increased wlth angle of attack and with spike extension
(decreasing covwl-position parameter, 92). The investigation reported

in reference 4 did not show an adverse effect of the engine on distor-
tion, possibly because that test was restricted to zero angle of attack.

The source of the high distortion with the engine is shown in figure
5. Profiles at the compressor face with the same inlet operating condi-
tlon are presented for the engine and cold-pipe configurations at angles
of attack of 0°, 3°, and 6°. As shown in figure 5, the cold-pipe date
were not exactly on the horizontal centr+line, as were the engine data.
Thus, only trends may be surmised from tnis figure. BEven at zero angle
of attack the profiles appear different, although the distortion value
was the same. Whether this is an effect of the engine or of the circum-
ferential location is not clear. In any event, as angle of attack is in-
creased to 6°, low pressures developed around the hub with the engine
operating. Tt would appear that the engine induced swirl around the hub
thet resulted in flow separation. This conclusion is indicated by the
relative level of the static pressures measured 6 inches upstream of the‘
total-pressure survey.

Total-pressure profiles at the turbine discharge are presented in
flgure 6 for distortions of 14 and 48 percent at the compressor face at
practically the seme engine speed. It is interesting to note that the
profiles at the turbine discharge are approximetely the same for such dif-
ferent amounts of compressor-face distortion.

The range of compressor-face distortion imposed on the engine at the
verious angles of attack is shown in figure 7. Duration of operation at

CONFIDENTTAL
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the various angles of attack is summarized in table I. In addition to
operation with these severe distortions, the engine was operated during
unstable inlet flow (table I). The engine was operated for a short while
with stetic-pressure amplitudes as high as 48 percent of the compressor
value. A more complete discussion of these data and the amount of pulse
propagation through the engine is included in reference 6.

The measured engine performance ig presented in figure 8, which shows
various degrees of compressor-face distortion and includes operation with
unstable inlet conditions. These data indicate that, for the particular
engine investigated, high compressor-face distortion and inlet pulsations
did not reduce engine performsnce (e.g., fig. 8(d)). In addition, ob-
servations made during the test indicated no tendency of the engine to
surge under these conditions. Whether the high distortions or inlet buzz
reduced the surge margin, as may  have been the case, was not determined.
In addition, the possible development of hot spots in the engine could
not be observed with the instrumentation avallable.

During the last run of this investigation, severe inlet pulsing was
imposed on the engine for about 12 minutes, and vibrations in excess of 50
mils (gbout 10 mils was the allowsble maximum) were recorded. Immedistely
after the severe buzz condition was imposed on the engine, the engine was
restarted in the tunnel and operated at rated power. Engine vibrations
were observed to be normal. After this run the engine was removed from
the nacelle and was thoroughly inspected. In addition to a few broken
mounting brackets around the engine, a paper-thin crack was observed in
the horizontal front-bearing support strut close to the hub (fig. 9).
Whether the severe inlet pulsing caused this damsge is not certain, since,
prior to the last run, the engine had been operated for over 19 hours at a
free-gtream Mach number of 2.0 without close inspection of this region.

The performence of the engine during windmilling (zero fuel flow)
is shown in figure 8. A set of windmilling speed data obtained with Mach
numbers up to 2.5 and presented in figure 10 indicates higher windmilling
speeds than those reported for the J34 engine in reference 5.

SUMMARY OF RESULTS

The following results were noted in an investigation of a supersonic-
inlet - turbojet-engine combination at a free-stream Mach number of 2.0
and engles of attack from 0° to 6°:

1. Inlet pressure recovery with the engine wes the same as that with
an exit plug. However, the trend of the data indicates that compressor-
face distortion mey have been increased at sngle of attack by the engine.

2. Unstable inlet flow and large compressor-face distortion were im-
posed on the engine apparently without reducing engine performance or in-
ducing engine surge.

CONFIDENTTIAL
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5. The engine was operated for over 19 hours (including about 12
min of violent inlet buzz), after which a paper-thin crack was observed
in the front-bearing support. In addltion, engine vibrations of about
50 mils, which were much higher than the maximum allowable, were recorded
during severe inlet buzz. After this severe operating condition, the
engine was restarted and operasted at rated power. Vibrations were ob-
served to be normsal.

Lewis Flight Propulsion Laboratory :
National Advisory Committee for Aeronautics
Cleveland, Ohio, May 20, 1957 -
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TAELE I. - SUMMARY OF ENGINE OPERATION

Type of operation Free-stream | Angle of | Time,
Mach attack, hr
number deg (a)
Steble inlet 2.0 0 12 .4
3 3-0
6 2.3
Unsteble inlet Ap, = 0.07 P, 2.0 0 0.6
3 .3
6 .5
Unstable inlet Ap, Z 0.07 Py 2.0 0 0.2
Tunnel, subsonic <1l.0 o] 3.1

*rotal time, 22.4 hr.
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Conpressor Turbine
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Figure 3. - RNacelle and instrumentation Pfor engine and cold-pipe installations.
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Ratlo of turbine-discharge to compressor-inlet total pressure,

Ps/Py
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Compressor-stator position, B, deg
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Figure 8. - Contlnued. Engine performance.
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Figure 8. - Continued. Engine performance.
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Engine pressure ratio, Pg/P,
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Engine total-temperature ratio, T5/T2
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Compressor adiabatic efficiency, Ne
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Test data
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